Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Expert Rev Respir Med ; 17(4): 319-328, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288058

ABSTRACT

BACKGROUND: The right time of high-flow nasal cannulas (HFNCs) application in COVID-19 patients with acute respiratory failure remains uncertain. RESEARCH DESIGN AND METHODS: In this retrospective study, COVID-19-infected adult patients with hypoxemic respiratory failure were enrolled. Their baseline epidemiological data and respiratory failure related parameters, including the Ventilation in COVID-19 Estimation (VICE), and the ratio of oxygen saturation (ROX index), were recorded. The primary outcome measured was the 28-day mortality. RESULTS: A total of 69 patients were enrolled. Fifty-four (78%) patients who intubated and received invasive mechanical ventilatory (MV) support on day 1 were enrolled in the MV group. The remaining fifteen (22%) patients received HFNC initially (HFNC group), in which, ten (66%) patients were not intubated during hospitalization were belong to HFNC-success group and five (33%) of these patients were intubated later due to disease progression were attributed to HFNC-failure group. Compared with those in the MV group, those in the HFNC group had a lower mortality rate (6.7% vs. 40.7%, p = 0.0138). There were no differences in baseline characteristics among the two groups; however, the HFNC group had a lower VICE score (0.105 [0.049-0.269] vs. 0.260 [0.126-0.693], p = 0.0092) and higher ROX index (5.3 [5.1-10.7] vs. 4.3 [3.9-4.9], p = 0.0007) than the MV group. The ROX index was higher in the HFNC success group immediately before (p = 0.0136) and up to 12 hours of HFNC therapy than in the HFNC failure group. CONCLUSIONS: Early intubation may be considered in patients with a higher VICE score or a lower ROX index. The ROX score during HFNCs use can provide an early warning sign of treatment failure. Further investigations are warranted to confirm these results.


High flow nasal cannulas (HFNCs) were widely used in patients with COVID-19 infection related hypoxemic respiratory failure. However, there were concerns about its failure and related delayed intubation may be associated with a higher mortality rate. This retrospective study revealed patients with higher baseline disease severity and higher VICE scores may be treated with primary invasive mechanical ventilation. On the contrary, if their baseline VICE score is low and ROX index is high, HFNCs treatment might be safely applied initially. The trends of serial ROX index values during HFNC use could be a reliable periscope to predict the HFNC therapy outcome, therefore avoided delayed intubation.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Humans , Oxygen , Cannula , Retrospective Studies , Oxygen Inhalation Therapy/methods , COVID-19/therapy , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy
2.
Respir Med ; 211: 107194, 2023 05.
Article in English | MEDLINE | ID: covidwho-2277420

ABSTRACT

PNX was described as an uncommon complication in COVID-19 patients but clinical risk predictors and the potential role in patient's outcome are still unclear. We assessed prevalence, risk predictors and mortality of PNX in hospitalized COVID- 19 with severe respiratory failure performing a retrospective observational analysis of 184 patients admitted to our COVID-19 Respiratory Unit in Vercelli from October 2020 to March 2021. We compared patients with and without PNX reporting prevalence, clinical and radiological features, comorbidities, and outcomes. Prevalence of PNX was 8.1% and mortality was >86% (13/15) significantly higher than in patients without PNX (56/169) (P < 0.001). PNX was more likely to occur in patients with a history of cognitive decline (HR: 31.18) who received non-invasive ventilation (NIV) (p < 0.0071) and with low P/F ratio (HR: 0.99, p = 0.004). Blood chemistry in the PNX subgroup compared to patients without PNX showed a significant increase in LDH (420 U/L vs 345 U/L, respectively p = 0.003), ferritin (1111 mg/dl vs 660 mg/dl, respectively p = 0.006) and decreased lymphocytes (HR: 4.440, p = 0.004). PNX may be associated with a worse prognosis in terms of mortality in COVID patients. Possible mechanisms may include the hyperinflammatory status associated with critical illness, the use of NIV, the severity of respiratory failure and cognitive impairment. We suggest, in selected patients showing low P/F ratio, cognitive impairment and metabolic cytokine storm, an early treatment of systemic inflammation in association with high-flow oxygen therapy as a safer alternative to NIV in order to avoid fatalities connected with PNX.


Subject(s)
COVID-19 , Noninvasive Ventilation , Pneumothorax , Respiratory Insufficiency , Humans , COVID-19/complications , COVID-19/epidemiology , Pneumothorax/epidemiology , Pneumothorax/etiology , Pneumothorax/therapy , Retrospective Studies , Respiratory Insufficiency/epidemiology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Noninvasive Ventilation/adverse effects , Risk Factors
3.
Anesth Analg ; 136(4): 692-698, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2274534

ABSTRACT

BACKGROUND: The impact of high-flow nasal cannula (HFNC) on outcomes of patients with respiratory failure from coronavirus disease 2019 (COVID-19) is unknown. We sought to assess whether exposure to HFNC before intubation was associated with successful extubation and in-hospital mortality compared to patients receiving intubation only. METHODS: This single-center retrospective study examined patients with COVID-19-related respiratory failure from March 2020 to March 2021 who required HFNC, intubation, or both. Data were abstracted from the electronic health record. Use and duration of HFNC and intubation were examined' as well as demographics and clinical characteristics. We assessed the association between HFNC before intubation (versus without) and chance of successful extubation and in-hospital death using Cox proportional hazards models adjusting for age, sex, race/ethnicity, obesity, hypertension, diabetes, prior chronic obstructive pulmonary disease or asthma, HCO 3 , CO 2 , oxygen-saturation-to-inspired-oxygen (S:F) ratio, pulse, respiratory rate, temperature, and length of stay before intervention. RESULTS: A total of n = 440 patients were identified, of whom 311 (70.7%) received HFNC before intubation, and 129 (29.3%) were intubated without prior use of HFNC. Patients who received HFNC before intubation had a higher chance of in-hospital death (hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.06-4.05). No difference was found in the chance of successful extubation between the 2 groups (0.70, 0.41-1.20). CONCLUSIONS: Among patients with respiratory failure from COVID-19 requiring mechanical ventilation, patients receiving HFNC before intubation had a higher chance of in-hospital death. Decisions on initial respiratory support modality should weigh the risks of intubation with potential increased mortality associated with HFNC.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiratory Insufficiency , Ventilators, Mechanical , Noninvasive Ventilation/adverse effects , Oxygen Inhalation Therapy/adverse effects , Cannula , Retrospective Studies , COVID-19/mortality , COVID-19/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Hospital Mortality , Humans , Intubation, Intratracheal
4.
Semin Respir Crit Care Med ; 43(3): 405-416, 2022 06.
Article in English | MEDLINE | ID: covidwho-2253037

ABSTRACT

Non-invasive ventilation (NIV) or invasive mechanical ventilation (MV) is frequently needed in patients with acute hypoxemic respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. While NIV can be delivered in hospital wards and nonintensive care environments, intubated patients require intensive care unit (ICU) admission and support. Thus, the lack of ICU beds generated by the pandemic has often forced the use of NIV in severely hypoxemic patients treated outside the ICU. In this context, awake prone positioning has been widely adopted to ameliorate oxygenation during noninvasive respiratory support. Still, the incidence of NIV failure and the role of patient self-induced lung injury on hospital outcomes of COVID-19 subjects need to be elucidated. On the other hand, endotracheal intubation is indicated when gas exchange deterioration, muscular exhaustion, and/or neurological impairment ensue. Yet, the best timing for intubation in COVID-19 is still widely debated, as it is the safest use of neuromuscular blocking agents. Not differently from other types of acute respiratory distress syndrome, the aim of MV during COVID-19 is to provide adequate gas exchange while avoiding ventilator-induced lung injury. At the same time, the use of rescue therapies is advocated when standard care is unable to guarantee sufficient organ support. Nevertheless, the general shortage of health care resources experienced during SARS-CoV-2 pandemic might affect the utilization of high-cost, highly specialized, and long-term supports. In this article, we describe the state-of-the-art of NIV and MV setting and their usage for acute hypoxemic respiratory failure of COVID-19 patients.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Humans , Intensive Care Units , Noninvasive Ventilation/adverse effects , Respiration, Artificial/adverse effects , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
5.
Intern Emerg Med ; 18(2): 429-437, 2023 03.
Article in English | MEDLINE | ID: covidwho-2269677

ABSTRACT

In a high proportion of patients, infection by COVID-19 progresses to acute respiratory distress syndrome (ARDS), requiring invasive mechanical ventilation (IMV) and admission to an intensive care unit (ICU). Other devices, such as a high-flow nasal cannula (HFNC), have been alternatives to IMV in settings with limited resources. This study evaluates whether HFNC exposure time prior to IMV is associated with mortality. This observational, analytical study was conducted on a historical cohort of adults with ARDS due to SARS-CoV-2 who were exposed to HFNC and subsequently underwent IMV. Univariate and multivariate logistic regression was used to analyze the impact of HFNC exposure time on mortality, controlling for multiple potential confounders. Of 325 patients with ARDS, 41 received treatment with HFNC for more than 48 h before IMV initiation. These patients had a higher mortality rate (43.9% vs. 27.1%, p: 0.027) than those using HFNC < 48 h. Univariate analysis evidenced an association between mortality and HFNC ≥ 48 h (OR 2.16. 95% CI 1.087-4.287. p: 0.028). Such an association persisted in the multivariable analysis (OR 2.21. 95% CI 1.013-4.808. p: 0.046) after controlling for age, sex, comorbidities, basal severity of infection, and complications. This study also identified a significant increase in mortality after 36 h in HFNC (46.3%, p: 0.003). In patients with ARDS due to COVID-19, HFNC exposure ≥ 48 h prior to IMV is a factor associated with mortality after controlling multiple confounders. Physiological mechanisms for such an association are need to be defined.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , Humans , SARS-CoV-2 , Cannula/adverse effects , COVID-19/complications , COVID-19/therapy , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Noninvasive Ventilation/adverse effects , Risk Factors , Oxygen Inhalation Therapy , Respiratory Insufficiency/therapy
6.
Br J Hosp Med (Lond) ; 84(1): 1-10, 2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2242095

ABSTRACT

Optimisation of oxygenation strategies in patients with hypoxaemic respiratory failure is a top priority for acute care physicians, as hypoxaemic respiratory failure is one of the leading causes of admission. Various oxygenation methods range from non-invasive face masks to high flow nasal cannulae, which have advantages and disadvantages for this heterogeneous patient group. Focus has turned toward examining the benefits of non-invasive ventilation, as this was heavily researched in resource-limited settings during the COVID-19 pandemic. The oxygenation strategy should be determined on an individualised basis for patients, and with new evidence from the COVID-19 pandemic, providers may now consider placing further emphasis on non-invasive approaches. As non-invasive ventilation continues to be used in increasing frequency, new methods of monitoring patient response, including when to escalate ventilation strategy, will need to be validated.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Pandemics , COVID-19/complications , Hypoxia/etiology , Hypoxia/therapy , Respiratory Insufficiency/therapy , Noninvasive Ventilation/adverse effects , Oxygen Inhalation Therapy
7.
Trials ; 23(1): 218, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-2098433

ABSTRACT

BACKGROUND: Non-invasive ventilation (NIV) is indicated to avoid orotracheal intubation (OTI) to reduce hospital stay and mortality. Patients infected by SARS-CoV2 can progress to respiratory failure (RF); however, in the initial phase, they can be submitted to oxygen therapy and NIV. Such resources can produce aerosol and can cause a high risk of contagion to health professionals. Safe NIV strategies are sought, and therefore, the authors adapted diving masks to be used as NIV masks (called an Owner mask). OBJECTIVE: To assess the Owner mask safety and effectiveness regarding conventional orofacial mask for patients in respiratory failure with and without confirmation or suspicion of COVID-19. METHODS: A Brazilian multicentric study to assess patients admitted to the intensive care unit regarding their clinical, sociodemographic and anthropometric data. The primary outcome will be the rate of tracheal intubation, and secondary outcomes will include in-hospital mortality, the difference in PaO2/FiO2 ratio and PaCO2 levels, time in the intensive care unit and hospitalization time, adverse effects, degree of comfort and level of satisfaction of the mask use, success rate of NIV (not progressing to OTI), and behavior of the ventilatory variables obtained in NIV with an Owner mask and with a conventional face mask. Patients with COVID-19 and clinical signs indicative of RF will be submitted to NIV with an Owner mask [NIV Owner COVID Group (n = 63)] or with a conventional orofacial mask [NIV orofacial COVID Group (n = 63)], and those patients in RF due to causes not related to COVID-19 will be allocated into the NIV Owner Non-COVID Group (n = 97) or to the NIV Orofacial Non-COVID Group (n = 97) in a randomized way, which will total 383 patients, admitting 20% for loss to follow-up. DISCUSSION: This is the first randomized and controlled trial during the COVID-19 pandemic about the safety and effectiveness of the Owner mask compared to the conventional orofacial mask. Experimental studies have shown that the Owner mask enables adequate sealing on the patient's face and the present study is relevant as it aims to minimize the aerosolization of the virus in the environment and improve the safety of health professionals. TRIAL REGISTRATION: Brazilian Registry of Clinical Trials (ReBEC): RBR - 7xmbgsz . Registered on 15 April 2021.


Subject(s)
COVID-19 , Diving , Noninvasive Ventilation , Humans , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Pandemics/prevention & control , RNA, Viral , Randomized Controlled Trials as Topic , SARS-CoV-2
8.
Trials ; 23(1): 105, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-2098423

ABSTRACT

BACKGROUND: Noninvasive respiratory support is frequently needed for patients with acute hypoxemic respiratory failure due to coronavirus disease 19 (COVID-19). Helmet noninvasive ventilation has multiple advantages over other oxygen support modalities but data about effectiveness are limited. METHODS: In this multicenter randomized trial of helmet noninvasive ventilation for COVID-19 patients, 320 adult ICU patients (aged ≥14 years or as per local standards) with suspected or confirmed COVID-19 and acute hypoxemic respiratory failure (ratio of arterial oxygen partial pressure to fraction of inspired oxygen < 200 despite supplemental oxygen with a partial/non-rebreathing mask at a flow rate of 10 L/min or higher) will be randomized to helmet noninvasive ventilation with usual care or usual care alone, which may include mask noninvasive ventilation, high-flow nasal oxygen, or standard oxygen therapy. The primary outcome is death from any cause within 28 days after randomization. The trial has 80% power to detect a 15% absolute risk reduction in 28-day mortality from 40 to 25%. The primary outcome will be compared between the helmet and usual care group in the intention-to-treat using the chi-square test. Results will be reported as relative risk  and 95% confidence interval. The first patient was enrolled on February 8, 2021. As of August 1, 2021, 252 patients have been enrolled from 7 centers in Saudi Arabia and Kuwait. DISCUSSION: We developed a detailed statistical analysis plan to guide the analysis of the Helmet-COVID trial, which is expected to conclude enrollment in November 2021. TRIAL REGISTRATION: ClinicalTrials.gov NCT04477668 . Registered on July 20, 2020.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Head Protective Devices , Humans , Noninvasive Ventilation/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , SARS-CoV-2
9.
Can Respir J ; 2022: 9914081, 2022.
Article in English | MEDLINE | ID: covidwho-2020561

ABSTRACT

The recently diagnosed coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in December 2019 commonly affects the respiratory system. The incidence of acute hypoxic respiratory failure varied among epidemiological studies with high percentage of patients requiring mechanical ventilation with a high mortality. Noninvasive ventilation is an alternative tool for ventilatory support instead of invasive mechanical ventilation, especially with scarce resources and intensive care beds. Initially, there were concerns by the national societies regarding utilization of noninvasive ventilation in acute respiratory failure. Recent publications reflect the gained experience with the safe utilization of noninvasive mechanical ventilation. Noninvasive ventilation has beneficiary role in treatment of acute hypoxic respiratory failure with proper indications, setting, monitoring, and timely escalation of therapy. Patients should be monitored frequently for signs of improvement or deterioration in the clinical status. Awareness of indications, contraindications, and parameters reflecting either success or failure of noninvasive ventilation in the management of acute respiratory failure secondary to COVID-19 is essential for improvement of outcomes.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , Respiratory Tract Infections , COVID-19/complications , COVID-19/therapy , Humans , Hypoxia/complications , Noninvasive Ventilation/adverse effects , Respiration, Artificial/adverse effects , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory Tract Infections/complications , SARS-CoV-2
10.
Intern Emerg Med ; 17(8): 2367-2377, 2022 11.
Article in English | MEDLINE | ID: covidwho-1971819

ABSTRACT

We tested the prognostic performance of different scores for the identification of subjects with acute respiratory failure by COVID-19, at risk of in-hospital mortality and NIV failure. We conducted a retrospective study, in the Medical High-Dependency Unit of the University-Hospital Careggi. We included all subjects with COVID-19 and ARF requiring non-invasive ventilation (NIV) between March 2020 and January 2021. Clinical parameters, the HACOR score (Heart rate, Acidosis, Consciousness, Oxygenation, Respiratory Rate) and ROX index ((SpO2/FiO2)/respiratory rate) were collected 3 (-3) and 1 day (-1) before the NIV initiation, the first day of treatment (Day0) and after 1 (+1), 2 (+2), 5 (+5), 8 (+8) and 11 (+11) of treatment. The primary outcomes were in-hospital mortality and NIV failure. We included 135 subjects, mean age 69±13 years, 69% male. Patients, who needed mechanical ventilation, showed a higher HACOR score (Day0: 6 [5-7] vs 6 [6-7], p=.057; Day+2: 6 [6-6] vs 6 [4-6], p=.013) and a lower ROX index (Day0: 4.2±2.3 vs 5.1±2.3, p=.055; Day+2: 4.4±1.2.vs 5.5±1.3, p=.001) than those with successful NIV. An HACOR score >5 was more frequent among nonsurvivors (Day0: 82% vs 58%; Day2: 82% vs 48%, all p<0.01) and it was associated with in-hospital mortality (Day0: RR 5.88, 95%CI 2.01-17.22; Day2: RR 4.33, 95%CI 1.64-11.41) independent to age and Charlson index. In conclusion, in subjects treated with NIV for ARF caused by COVID19, respiratory parameters collected after the beginning of NIV allowed to identify those at risk of an adverse outcome. An HACOR score >5 was independently associated with increased mortality rate.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Female , Noninvasive Ventilation/adverse effects , Respiration, Artificial , Hospital Mortality , COVID-19/therapy , Retrospective Studies , Respiratory Insufficiency/therapy , Respiratory Insufficiency/etiology , Prognosis
11.
Respir Care ; 67(8): 1011-1021, 2022 08.
Article in English | MEDLINE | ID: covidwho-1964279

ABSTRACT

Prone positioning (PP) has been used extensively for patients requiring invasive mechanical ventilation for hypoxemic respiratory failure during the COVID-19 pandemic. Evidence suggests that PP was beneficial during the pandemic, as it improves oxygenation and might improve chances of survival, especially in those with a continuum of positive oxygenation responses to the procedure. Additionally, the pandemic drove innovation regarding PP, as it brought attention to awake PP (APP) and the value of an interdisciplinary team approach to PP during a pandemic. APP appears to be safe and effective at improving oxygenation; APP may also reduce the need for intubation in patients requiring advanced respiratory support like high-flow nasal cannula or noninvasive ventilation. Teams specifically assembled for PP during a pandemic also appear useful and can provide needed assistance to bedside clinicians in the time of crisis. Complications associated with PP can be mitigated, and a multidisciplinary approach to reduce the incidence of complications is recommended.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Noninvasive Ventilation/adverse effects , Pandemics , Patient Positioning/methods , Prone Position/physiology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
12.
Crit Care ; 26(1): 224, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1957066

ABSTRACT

BACKGROUND: Noninvasive ventilation (NIV) is a promising alternative to invasive mechanical ventilation (IMV) with a particular importance amidst the shortage of intensive care unit (ICU) beds during the COVID-19 pandemic. We aimed to evaluate the use of NIV in Europe and factors associated with outcomes of patients treated with NIV. METHODS: This is a substudy of COVIP study-an international prospective observational study enrolling patients aged ≥ 70 years with confirmed COVID-19 treated in ICU. We enrolled patients in 156 ICUs across 15 European countries between March 2020 and April 2021.The primary endpoint was 30-day mortality. RESULTS: Cohort included 3074 patients, most of whom were male (2197/3074, 71.4%) at the mean age of 75.7 years (SD 4.6). NIV frequency was 25.7% and varied from 1.1 to 62.0% between participating countries. Primary NIV failure, defined as need for endotracheal intubation or death within 30 days since ICU admission, occurred in 470/629 (74.7%) of patients. Factors associated with increased NIV failure risk were higher Sequential Organ Failure Assessment (SOFA) score (OR 3.73, 95% CI 2.36-5.90) and Clinical Frailty Scale (CFS) on admission (OR 1.46, 95% CI 1.06-2.00). Patients initially treated with NIV (n = 630) lived for 1.36 fewer days (95% CI - 2.27 to - 0.46 days) compared to primary IMV group (n = 1876). CONCLUSIONS: Frequency of NIV use varies across European countries. Higher severity of illness and more severe frailty were associated with a risk of NIV failure among critically ill older adults with COVID-19. Primary IMV was associated with better outcomes than primary NIV. Clinical Trial Registration NCT04321265 , registered 19 March 2020, https://clinicaltrials.gov .


Subject(s)
COVID-19 , Frailty , Noninvasive Ventilation , Respiratory Insufficiency , Aged , COVID-19/therapy , Cohort Studies , Female , Humans , Intensive Care Units , Male , Noninvasive Ventilation/adverse effects , Pandemics , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/therapy
13.
Crit Care ; 26(1): 118, 2022 04 29.
Article in English | MEDLINE | ID: covidwho-1951294

ABSTRACT

BACKGROUND: Whether prone position (PP) improves clinical outcomes in COVID-19 pneumonia treated with noninvasive ventilation (NIV) is unknown. We evaluated the effect of early PP on 28-day NIV failure, intubation and death in noninvasively ventilated patients with moderate-to-severe acute hypoxemic respiratory failure due to COVID-19 pneumonia and explored physiological mechanisms underlying treatment response. METHODS: In this controlled non-randomized trial, 81 consecutive prospectively enrolled patients with COVID-19 pneumonia and moderate-to-severe (paO2/FiO2 ratio < 200) acute hypoxemic respiratory failure treated with early PP + NIV during Dec 2020-May 2021were compared with 162 consecutive patients with COVID-19 pneumonia matched for age, mortality risk, severity of illness and paO2/FiO2 ratio at admission, treated with conventional (supine) NIV during Apr 2020-Dec 2020 at HUMANITAS Gradenigo Subintensive Care Unit, after propensity score adjustment for multiple baseline and treatment-related variables to limit confounding. Lung ultrasonography (LUS) was performed at baseline and at day 5. Ventilatory parameters, physiological dead space indices (DSIs) and circulating inflammatory and procoagulative biomarkers were monitored during the initial 7 days. RESULTS: In the intention-to-treat analysis. NIV failure occurred in 14 (17%) of PP patients versus 70 (43%) of controls [HR = 0.32, 95% CI 0.21-0.50; p < 0.0001]; intubation in 8 (11%) of PP patients versus 44 (30%) of controls [HR = 0.31, 95% CI 0.18-0.55; p = 0.0012], death in 10 (12%) of PP patients versus 59 (36%) of controls [HR = 0.27, 95% CI 0.17-0.44; p < 0.0001]. The effect remained significant within different categories of severity of hypoxemia (paO2/FiO2 < 100 or paO2/FiO2 100-199 at admission). Adverse events were rare and evenly distributed. Compared with controls, PP therapy was associated with improved oxygenation and DSIs, reduced global LUS severity indices largely through enhanced reaeration of dorso-lateral lung regions, and an earlier decline in inflammatory markers and D-dimer. In multivariate analysis, day 1 CO2 response outperformed O2 response as a predictor of LUS changes, NIV failure, intubation and death. CONCLUSION: Early prolonged PP is safe and is associated with lower NIV failure, intubation and death rates in noninvasively ventilated patients with COVID-19-related moderate-to-severe hypoxemic respiratory failure. Early dead space reduction and reaeration of dorso-lateral lung regions predicted clinical outcomes in our study population. CLINICAL TRIAL REGISTRATION: ISRCTN23016116 . Retrospectively registered on May 1, 2021.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Humans , Noninvasive Ventilation/adverse effects , Prone Position , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
14.
Ther Adv Respir Dis ; 16: 17534666221113663, 2022.
Article in English | MEDLINE | ID: covidwho-1950910

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) are important treatment approaches for acute hypoxemic respiratory failure (AHRF) in coronavirus disease 2019 (COVID-19) patients. However, the differential impact of HFNC versus NIV on clinical outcomes of COVID-19 is uncertain. OBJECTIVES: We assessed the effects of HFNC versus NIV (interface or mode) on clinical outcomes of COVID-19. METHODS: We searched PubMed, EMBASE, Web of Science, Scopus, MedRxiv, and BioRxiv for randomized controlled trials (RCTs) and observational studies (with a control group) of HFNC and NIV in patients with COVID-19-related AHRF published in English before February 2022. The primary outcome of interest was the mortality rate, and the secondary outcomes were intubation rate, PaO2/FiO2, intensive care unit (ICU) length of stay (LOS), hospital LOS, and days free from invasive mechanical ventilation [ventilator-free day (VFD)]. RESULTS: In all, 23 studies fulfilled the selection criteria, and 5354 patients were included. The mortality rate was higher in the NIV group than the HFNC group [odds ratio (OR) = 0.66, 95% confidence interval (CI): 0.51-0.84, p = 0.0008, I2 = 60%]; however, in this subgroup, no significant difference in mortality was observed in the NIV-helmet group (OR = 1.21, 95% CI: 0.63-2.32, p = 0.57, I2 = 0%) or NIV-continuous positive airway pressure (CPAP) group (OR = 0.77, 95% CI: 0.51-1.17, p = 0.23, I2 = 65%) relative to the HFNC group. There were no differences in intubation rate, PaO2/FiO2, ICU LOS, hospital LOS, or days free from invasive mechanical ventilation (VFD) between the HFNC and NIV groups. CONCLUSION: Although mortality was lower with HFNC than NIV, there was no difference in mortality between HFNC and NIV on a subgroup of helmet or CPAP group. Future large sample RCTs are necessary to prove our findings. REGISTRATION: This systematic review and meta-analysis protocol was prospectively registered with PROSPERO (no. CRD42022321997).


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy/adverse effects , Respiration, Artificial , Respiratory Insufficiency/therapy
15.
Iran J Med Sci ; 47(3): 194-209, 2022 05.
Article in English | MEDLINE | ID: covidwho-1893660

ABSTRACT

Non-invasive ventilation (NIV) is primarily used to treat acute respiratory failure. However, it has broad applications to manage a range of other diseases successfully. The main advantage of NIV lies in its capability to provide the same physiological effects as invasive ventilation while avoiding the placement of an artificial airway and its associated life-threatening complications. The war on the COVID-19 pandemic is far from over. The present narrative review aimed at identifying various aspects of NIV usage, in COVID-19 and other patients, such as the onset time, mode, setting, positioning, sedation, and types of interface. A search for articles published from May 2020 to April 2021 was conducted using MEDLINE, PMC central, Scopus, Web of Science, Cochrane Library, and Embase databases. Of the initially identified 5,450 articles, 73 studies and 24 guidelines on the use of NIV were included. The search was limited to studies involving human cases and English language articles. Despite several reported benefits of NIV, the evidence on the use of NIV in COVID-19 patients does not yet fully support its routine use.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Noninvasive Ventilation/adverse effects , Pandemics , Respiration, Artificial/adverse effects , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
16.
J Crit Care ; 69: 153989, 2022 06.
Article in English | MEDLINE | ID: covidwho-1814662

ABSTRACT

PURPOSE: Acute lung injury associated with COVID-19 contributes significantly to its morbidity and mortality. Though invasive mechanical ventilation is sometimes necessary, the use of high flow nasal oxygen may avoid the need for mechanical ventilation in some patients. For patients approaching the limits of high flow nasal oxygen support, addition of inhaled pulmonary vasodilators is becoming more common but little is known about its effects. This is the first descriptive study of a cohort of patients receiving inhaled epoprostenol with high flow nasal oxygen for COVID-19. MATERIALS AND METHODS: We collected clinical data from the first fifty patients to receive inhaled epoprostenol while on high flow nasal oxygen at our institution. We compared the characteristics of patients who did and did not respond to epoprostenol addition. RESULTS: The 18 patients that did not stabilize or improve following initiation of inhaled epoprostenol had similar rates of invasive mechanical ventilation as those who improved or stabilized (50% vs 56%). Rates of mortality were not significantly different between the two groups (17% and 31%). CONCLUSIONS: In patients with COVID-19 induced hypoxemic respiratory failure, the use of inhaled epoprostenol with high flow nasal oxygen is feasible, but physiologic signs of response were not related to clinical outcomes.


Subject(s)
COVID-19 Drug Treatment , Noninvasive Ventilation , Respiratory Insufficiency , Cannula , Epoprostenol/therapeutic use , Humans , Noninvasive Ventilation/adverse effects , Oxygen , Oxygen Inhalation Therapy , Respiratory Insufficiency/therapy
17.
Sci Prog ; 105(2): 368504221092891, 2022.
Article in English | MEDLINE | ID: covidwho-1784977

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been declared a pandemic by the World Health Organization; it has affected millions of people and caused hundreds of thousands of deaths. Patients with COVID-19 pneumonia may develop acute hypoxia respiratory failure and require noninvasive respiratory support or invasive respiratory management. Healthcare workers have a high risk of contracting COVID-19 while fitting respiratory devices. Recently, European experts have suggested that the use of helmet continuous positive airway pressure should be the first choice for acute hypoxia respiratory failure caused by COVID-19 because it reduces the spread of the virus in the ambient air. By contrast, in the United States, helmets were restricted for respiratory care before the COVID-19 pandemic until the Food and Drug Administration provided the 'Umbrella Emergency Use Authorization for Ventilators and Ventilator Accessories'. This narrative review provides an evidence-based overview of the use of helmet ventilation for patients with respiratory failure.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/epidemiology , Head Protective Devices/adverse effects , Humans , Hypoxia/complications , Noninvasive Ventilation/adverse effects , Pandemics , Respiratory Insufficiency/epidemiology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
18.
Ther Adv Respir Dis ; 16: 17534666221087847, 2022.
Article in English | MEDLINE | ID: covidwho-1759662

ABSTRACT

BACKGROUND: During the novel coronavirus disease 2019 (COVID-19) pandemic raging around the world, the effectiveness of respiratory support treatment has dominated people's field of vision. This study aimed to compare the effectiveness and value of high-flow nasal cannula (HFNC) with noninvasive ventilation (NIV) for COVID-19 patients. METHODS: A comprehensive systematic review via PubMed, Web of Science, Cochrane, Scopus, WHO database, China Biology Medicine Disc (SINOMED), and China National Knowledge Infrastructure (CNKI) databases was conducted, followed by meta-analysis. RevMan 5.4 was used to analyze the results and risk of bias. The primary outcome is the number of deaths at day 28. The secondary outcomes are the occurrence of invasive mechanical ventilation (IMV), the number of deaths (no time-limited), length of intensive care unit (ICU) and hospital stay, ventilator-free days, and oxygenation index [partial pressure of arterial oxygen (PaO2)/fraction of inhaled oxygen (FiO2)] at 24 h. RESULTS: In total, nine studies [one randomized controlled trial (RCT), seven retrospective studies, and one prospective study] totaling 1582 patients were enrolled in the meta-analysis. The results showed that the incidence of IMV, number of deaths (no time-limited), and length of ICU stay were not statistically significant in the HFNC group compared with the NIV group (ps = 0.71, 0.31, and 0.33, respectively). Whereas the HFNC group performed significant advantages in terms of the number of deaths at day 28, length of hospital stay and oxygenation index (p < 0.05). Only in the ventilator-free days did NIV show advantages over the HFNC group (p < 0.0001). CONCLUSION: For COVID-19 patients, the use of HFNC therapy is associated with the reduction of the number of deaths at day 28 and length of hospital stay, and can significantly improve oxygenation index (PaO2/FiO2) at 24 h. However, there was no favorable between the HFNC and NIV groups in the occurrence of IMV. NIV group was superior only in terms of ventilator-free days.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/methods , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Insufficiency/therapy
19.
Respir Physiol Neurobiol ; 298: 103842, 2022 04.
Article in English | MEDLINE | ID: covidwho-1655093

ABSTRACT

BACKGROUND: Noninvasive ventilation (NIV) and High-flow nasal cannula (HFNC) are the main forms of treatment for acute respiratory failure. This study aimed to evaluate the effect, safety, and applicability of the NIV and HFNC in patients with acute hypoxemic respiratory failure (AHRF) caused by COVID-19. METHODS: In this retrospective study, we monitored the effect of NIV and HFNC on the SpO2 and respiratory rate before, during, and after treatment, length of stay, rates of endotracheal intubation, and mortality in patients with AHRF caused by COVID-19. Additionally, data regarding RT-PCR from physiotherapists who were directly involved in assisting COVID-19 patients and non-COVID-19. RESULTS: 62.2 % of patients were treated with HFNC. ROX index increased during and after NIV and HFNC treatment (P < 0.05). SpO2 increased during NIV treatment (P < 0.05), but was not maintained after treatment (P = 0.17). In addition, there was no difference in the respiratory rate during or after the NIV (P = 0.95) or HFNC (P = 0.60) treatment. The mortality rate was 35.7 % for NIV vs 21.4 % for HFNC (P = 0.45), while the total endotracheal intubation rate was 57.1 % for NIV vs 69.6 % for HFNC (P = 0.49). Two adverse events occurred during treatment with NIV and eight occurred during treatment with HFNC. There was no difference in the physiotherapists who tested positive for SARS-COV-2 directly involved in assisting COVID-19 patients and non-COVID-19 ones (P = 0.81). CONCLUSION: The application of NIV and HFNC in the critical care unit is feasible and associated with favorable outcomes. In addition, there was no increase in the infection of physiotherapists with SARS-CoV-2.


Subject(s)
COVID-19/therapy , Cannula , Intubation, Intratracheal , Noninvasive Ventilation , Outcome and Process Assessment, Health Care , Oxygen/administration & dosage , Positive-Pressure Respiration , Respiratory Insufficiency/therapy , Respiratory Rate/drug effects , Acute Disease , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Brazil , COVID-19/complications , COVID-19/mortality , Cannula/adverse effects , Cannula/standards , Cannula/statistics & numerical data , Feasibility Studies , Female , Humans , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Noninvasive Ventilation/standards , Noninvasive Ventilation/statistics & numerical data , Outcome and Process Assessment, Health Care/statistics & numerical data , Physical Therapists , Positive-Pressure Respiration/adverse effects , Positive-Pressure Respiration/standards , Positive-Pressure Respiration/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL